Reg. No.

Question Paper Code: 60769

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2016.

First Semester

Civil Engineering

MA 2111/MA 12/080030001 — MATHEMATICS – I

(Common to all branches)

(Regulations 2008)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. The product of two eigenvalues of the matrix $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$ is 16. Find the third eigenvalue.
- 2. Discuss the nature of the quadratic form $2x^2 + 3y^2 + 2z^2 + 2xy$.
- 3. Find the equation to the sphere, having the points (-4, 5, 1) and (4, 1, 7) as ends of a diameter.
- 4. Prove that $9x^2 + 9y^2 4z^2 + 12yz 6zx + 54z 81 = 0$ represents a cone.
- 5. Find the radius of curvature of the curve given by $y = c \log \sec \frac{x}{c}$.
- 6. Find the envelope of the family of lines $y = mx + \frac{a}{m}$, where m is the parameter and a is a constant.
- 7. If u = f(y-z, z-x, x-y), find $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z}$.
- 8. If $r = \frac{yz}{x}$, $s = \frac{zx}{y}$, $t = \frac{xy}{z}$, find $\frac{\partial(r, s, t)}{\partial(x, y, z)}$.

- 9. Express $\int_{0}^{a} \int_{y}^{x^2} \frac{x^2}{\sqrt{x^2 + y^2}} dx dy$ into polar coordinates.
- 10. Evaluate $\iiint_{0}^{2} \int_{0}^{y} dx \, dy \, dz$.

PART B — $(5 \times 16 = 80 \text{ marks})$

- 11. (a) (i) Find the eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} 2 & 0 & -1 \\ 0 & 2 & 0 \\ -1 & 0 & 2 \end{bmatrix}$ (8)
 - (ii) Verify the Cayley Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 3 & 7 \\ 4 & 2 & 3 \\ 1 & 2 & 1 \end{bmatrix}$ and hence find A^{-1} . (8)

Or

- (b) Reduce the quadratic form $2x^2 + y^2 + z^2 + 2xy 2xz 4yz$ into a canonical form by an orthogonal transformation and hence find its nature. (16)
- 12. (a) (i) Find the centre and radius of the circle given by $x^2 + y^2 + z^2 + 2x 2y + 4z 19 = 0$ and x + 2y + 2z + 7 = 0. (8)
 - (ii) Find the equation of the cone whose vertex is the point (1, 1, 0) and whose base in the curve y = 0, $x^2 + z^2 = 4$. (8)

Or

- (b) (i) Find the condition that the plane lx + my + nz = p may be a tangent plane to the sphere $x^2 + y^2 + z^2 + 2ux + 2vy + 2wz + d = 0$. (8)
 - (ii) Find the equation of the right circular cylinder which passes through the circle $x^2 + y^2 + z^2 = 9$, x + y + z = 3. (8)
- 13. (a) (i) Find the envelope of the straight lines $\frac{x}{a} + \frac{y}{b} = 1$, where the parameters are related by the equation $a^2 + b^2 = c^2$. (8)
 - (ii) Find the radius of curvature at any point of the cycloid $x = a(\theta + \sin \theta)$ and $y = a(1 \cos \theta)$. (8)

Or

- (b) (i) Find the radius of curvature and centre of curvature of the parabola $y^2 = 4ax$ at the point t. Also find the equation of the evolute. (10)
 - (ii) Find the envelope of the circles drawn upon the radius vectors of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ as diameter. (6)
- 14. (a) (i) If $u = \sin^{-1}\left(\frac{x^2 + y^2}{x + y}\right)$, prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \tan u$. (8)
 - (ii) Find the extreme values of f(x, y) = xy(a x y). (8)

Or

- (b) (i) Expand $e^x \cos y$ in powers of x, y upto the second degree terms using Taylor's theorem. (8)
 - (ii) Find the greatest and least distances of the point (3, 4, 12) from the unit sphere whose centre is at the origin. (8)
- 15. (a) (i) Change the order of integration $\int_{0}^{1} \int_{x^2}^{2-x} xy \, dx \, dy$ and hence evaluate it. (8)
 - (ii) Find the area that lies outside the circle $r=2\cos\theta$ and inside the circle $r=6\cos\theta$, using double integration. (8)

01

- (b) (i) Find the volume of the cylinder $x^2 + y^2 = 25$ bounded by the planes z = 1 and x + z = 10. (8)
 - (ii) Evaluate $\iint_R \frac{xy \, dx \, dy}{\sqrt{x^2 + y^2}}$, where R is the region in the first quadrant enclosed by the circles $x^2 + y^2 = 4$ and $x^2 + y^2 = 16$. (8)

